§3．Rings and Modules of fractions

$$
\begin{aligned}
\mathbb{Z} \mapsto Q= & \left\{\left.\frac{a}{s} \right\rvert\, a, s \in \mathbb{Z}, s \neq 0\right\} \\
& \frac{a}{s}=\frac{b}{t} \Leftrightarrow a t=b s
\end{aligned}
$$

field of fractions let $A$ be an integral domain．
Consider＂$\equiv$＂on $A \times A \mid\{0\}$ defined by

$$
\left.\begin{array}{rl} 
& (a, s) \equiv(b, t) \Leftrightarrow a t-b s=0 \\
\text { Frac } A= & (A \times A \backslash\{0\}) / \equiv \\
= & \left\{\frac{a}{s}|a \in A, s \in A|\{0\}\right. \\
\frac{a}{s}:=\text { the equ. Cars of }(a, s)
\end{array}\right\}
$$

更一般的有：
§3．1 ring of fractions of $A$ with respect to $S$ ．

$$
A=\text { ring }
$$

A multiplicativaly dored subset of $A$ is a subset $S$ of $A$ s.t.

1) $1 \in S$
2) $a, b \in S \Rightarrow a b \in S$.

Let $S$ be a mubt. clsed subset of $A$.

$$
\begin{aligned}
& \text { "三" on } A \times S: \\
& (a, s) \equiv(b, \pi) \stackrel{\operatorname{lof}}{\Leftrightarrow} \nexists u \in S_{\text {s.t. }}(a t-b s) u=0
\end{aligned}
$$

- reflex $\checkmark$
- symmetric $\checkmark$
- Transitive?

Pf: $\left.\begin{array}{rl}(a, s) \equiv(b, t) & \Rightarrow(a t-b s) v=0 \\ (b, t) \equiv(c, u) & \Rightarrow(b u-c t) w=0\end{array}\right\}$ elimine b

$$
\stackrel{\text { eiminivat } b}{\Rightarrow}(a u-c s) \text { tvw }=0
$$

$$
\begin{aligned}
S^{-1} A: & =(A \times S) / \equiv \\
& =\left\{\left.\frac{a}{s} \right\rvert\, a \in A, S \in S\right\}
\end{aligned}
$$

$\uparrow$ equivalence lass of $(a, s)$.

$$
\text { (1+" } \frac{a}{s}+\frac{b}{t}=\frac{a t+b s}{s t}
$$

"." $\frac{a}{s} \cdot \frac{b}{t}=\frac{a b}{s t}$
Fact: i) $\left(S^{-1} A,+, \cdot\right)=$ ring wish identity $\frac{1}{1}$.
$i i)$ ring homo. $f: A \rightarrow S^{-1} A$ a $\mapsto \frac{a}{1}$ (not ing. in general)
iii) $\quad S^{-1} A=\operatorname{Frac} A$, if $A=$ int. domain and $S=A \mid\{0\}$.

Prop 3.1 (Universal property of $S^{-1} A$ )
$S \subset A$ milt. closed subset
If $g: A \rightarrow B$ ring hon. with $g(S) \subseteq B^{x}$, then $\exists!c h: S^{-1} A \rightarrow B$ sit. $g=h \circ f$.

pf: Uniqueness:

$$
h\left(\frac{a}{s}\right)=h\left(\frac{a}{1}\right) h\left(\frac{s}{1}\right)^{-1}=g(a) \cdot g(s)^{-1}
$$

existence:

$$
h\left(\frac{a}{s}\right):=g(a) g(s)^{-1}
$$

ONT: $h$ is well-defined.

$$
\begin{aligned}
& \frac{a}{s}=\frac{a^{\prime}}{s^{\prime}} \Rightarrow\left(a s^{\prime}-a^{\prime} s\right) t=0 \\
& \Rightarrow\left(g(a) g\left(s^{\prime}\right)-g\left(a^{\prime}\right) g(s)\right) g(t)=0 \\
& g(t) \in B^{x} \\
& \Rightarrow g(a) g(s)^{-1}=g\left(a^{\prime}\right) g\left(s^{\prime}\right)^{-1}
\end{aligned}
$$

Facts: $f=A \rightarrow S^{-1} A$
i) $s \in S \Rightarrow f(s) \in\left(S^{-1} A\right)^{x}$
ii) $f(a)=0 \Rightarrow \exists s \in S_{\text {sit. }} \quad s a=0$
iii) $S^{-1} A=\left\{f(a) \cdot f(s)^{-1} \mid a \in A, s \in S \cdot\right\}$

Cor 3.2 (characterize. $\delta^{-1} A$ ) $g: A \rightarrow B$ ring chon. If
i) $s \in S \Rightarrow g(s) \in B^{x}$
ii) $g(a)=0 \Rightarrow \exists s \in S$ s.t. $s a=0$
iii) $B=\left\{g(a) g(s)^{-1} \mid a \in A . s \subset S\right\}$
then $\exists$ ! iso. $h=s^{-1} A \xrightarrow{\sim} B$ sit. $g=h o f$.

Pf: ONTS: $h=$ iso.

- iii) $\Rightarrow h=\operatorname{sur} j$

$$
\begin{aligned}
A & \xrightarrow{f} S^{-1} A \\
g & \downarrow \\
& \downarrow
\end{aligned}
$$

- $\forall \frac{a}{s} \in$ Kew $\Rightarrow a \in$ kor $g$

$$
\begin{aligned}
& \Rightarrow \exists t \in S \text { sit at }=0 \\
& \Rightarrow \frac{a}{S}=\frac{0}{1}=0 \in S^{-1} A .
\end{aligned}
$$

Example:

1) localization of $A$ at $B$ :
$p=$ prime ideal of $A$

$$
S:=A-P
$$

$A_{g}:=S^{-1} A$ is a local ring with masind ideal $s^{-1 g}:=\left\{\left.\frac{a}{s} \in A_{g} \right\rvert\, a \in g . s \in S\right\}$.
2) $0 \in S \Leftrightarrow S^{-1} A=0$
3) $A_{f}:=s^{-1} A$ where $s=\left\{1, f, f^{2}, \cdots\right\}$
4)

$$
\begin{aligned}
& S^{-1} G \neq S^{-1} A \\
& \Leftrightarrow a+E \neq(1) \\
& \Leftrightarrow E \subseteq m \supseteq \sqrt[a]{ } \text { for some } x \\
& \\
& \operatorname{Rad}\left(S^{-1} A\right) \supseteq S^{-1} \sqrt{4}
\end{aligned}
$$

5.i)

$$
\begin{aligned}
& A=\mathbb{Z}, \quad g=(p) \\
& A_{(p)}=\left\{\left.\frac{m}{n} \in Q \right\rvert\,(n, p)=1\right\} \\
& A_{p}=\left\{\frac{m}{p^{n}} \in Q\right\}
\end{aligned}
$$

ii) $A=k\left[t_{1}, \cdots, t_{n}\right] \quad \mathcal{A}$ prime

$$
\begin{aligned}
V & =V(g) \subseteq \mathbb{A}^{n}=\left.k^{n} \quad g \in g \Leftrightarrow g\right|_{U}=0 . \\
A_{\mathcal{F}} & =\left\{\left.\frac{f}{g} \in k\left(t_{1} \cdot t_{n}\right) \right\rvert\, g \notin g\right\} \\
& =\left\{\frac{f}{g}|g|_{V} \neq 0\right\}
\end{aligned}
$$

local ring of $k^{n}$ along $V$

- Let $M$ be an A-module.

$$
\begin{gathered}
S^{-1} M:=M \times S / \equiv \\
\cdot(m, s) \equiv\left(m^{\prime}, s^{\prime}\right) \stackrel{d f f}{\Leftrightarrow} \exists t \in S \quad \text { sit. } t\left(s m^{\prime}-s^{\prime} m\right)=0 \\
\cdot S^{-1} A \text {-module str. : } \frac{a}{s^{\prime}} \cdot \frac{m}{s}:=\frac{a m}{s^{\prime} s} \quad \text { (wedl-deffel) } \\
\cdot M_{f}:=S^{-1} M \quad S=A-马 \\
\cdot M_{f}:=S^{-1} M \quad S=\left\{1, f, f^{2}, \cdots\right\}
\end{gathered}
$$

-Let $u=M \rightarrow N$ be an $A$-module hon.

$$
\begin{aligned}
S^{-1} u: S^{-1} M & \longrightarrow S^{-1} N \quad S^{-1} A \text {-modichom. } \\
\frac{m}{S} & \longmapsto \frac{u(m)}{s}
\end{aligned}
$$

Fact: $s^{-1}(v \circ u)=\left(s^{-1} v\right) \circ\left(s^{-1} u\right)$

Prop 3.3. $S^{-1}$ is exact. i.e. $M^{\prime} \xrightarrow{\rightarrow} M \xrightarrow{g} M^{\prime \prime}$ exalt $\Rightarrow S^{-1} M^{\prime} \xrightarrow{s^{-1} f} S^{-1} M \xrightarrow{S^{-1} g} S^{-1} M^{\prime \prime}$ exact

听: $1^{0} \quad g \circ f=0 \Rightarrow S^{-1} g \circ S^{-1} f=S^{-1}(0)=0$

$$
\Rightarrow \operatorname{Im}\left(s^{-1} f\right) \leq \operatorname{ker} s^{-1} g
$$

$$
\begin{aligned}
& 2^{0} \forall \frac{m}{s} \in \operatorname{ker} S^{-1} g \\
& \quad \Rightarrow \frac{g(m)}{s}=\frac{0}{1} \in S^{-1} M^{\prime \prime}
\end{aligned}
$$

$$
\Rightarrow \exists t \in S \quad \text { s.t. } \quad g(t m)=t g(m)=0
$$

$$
\Rightarrow \quad \operatorname{tm} \in \operatorname{ker} g=\operatorname{im} f
$$

$$
\Rightarrow t m=f\left(m^{\prime}\right) \text { for some } m^{\prime}
$$

$$
\Rightarrow \frac{m}{s}=\frac{t m}{t s}=\frac{f\left(m^{\prime}\right)}{t s}=s^{-1} f\left(\frac{m^{\prime}}{t s}\right)
$$

$$
\epsilon \operatorname{im}\left(s^{-1} f\right)
$$

$$
\Rightarrow \operatorname{ker} S^{-1} g \subseteq \operatorname{im} S^{-1} f
$$

$M^{\prime} \subseteq M \Rightarrow S^{-1} M^{\prime} \hookrightarrow S^{-1} M$ regarded as a submodule

Cor $3.4 \mathrm{~S}^{-1}$ commutes with,$+ \cap$, quotients. i.e. Let $N, P \subseteq M$ be submodules. Then
i) $S^{-1}(N+P)=S^{-1}(N)+S^{-1}(P) \quad\left(C S^{-1} M\right)$
ii) $S^{-1}(N \cap P)=S^{-1}(N) \cap S^{-1}(P) \quad\left(\subset S^{-1} M\right)$
ii) $S^{-1}(M / N) \cong S^{-1}(M) / S^{-1}(N)$

Pf: i) definition

$$
\begin{aligned}
& \text { ii) " } \subseteq \text { " dear. } \\
& \text { "ə". } \forall \frac{y}{s}=\frac{z}{t} \Rightarrow u(y t-s z)=0 \Rightarrow w=u y t=u s z \\
& \in N \cap P \\
& \Rightarrow \frac{y}{s}=\frac{w}{s+u} \in S^{-1}(N \cap P) \text {. }
\end{aligned}
$$

iii) $0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0 \Rightarrow V$
$\operatorname{Prop} 3.5 S^{-1} A \otimes_{A} M \leadsto S^{-1} M$

$$
\frac{a}{s} \otimes m \longmapsto \frac{a m}{s}
$$

pf: Consider $S^{-1} A \times M \rightarrow S^{-1} M$

$$
\left(\frac{a}{s}, m\right) \mapsto \frac{a m}{s}
$$

- A-bilina

$$
\begin{aligned}
\Rightarrow \exists!f: S^{-1} A \otimes_{A} M & \rightarrow S^{-1} M \\
\frac{a}{S} \otimes m & \mapsto \frac{a m}{s}
\end{aligned}
$$

- surg. (clear)
- in j.

$$
\begin{aligned}
& \forall x=\sum_{i} \frac{a_{i}}{s_{i}} \otimes m_{i} \in S^{-1} A \otimes M \\
& s:=\prod_{i} s_{i}, t_{i}:=\prod_{j \neq i} s_{j} \quad\left(s_{i}=\frac{s}{t_{i}}\right) \\
& \Rightarrow x=\sum_{i} \frac{a_{i} t_{i}}{s} \otimes m_{i}=\frac{1}{s} \otimes \sum_{i} a_{i} t_{i} m_{i}
\end{aligned}
$$

$\Rightarrow$ any element in $S^{-1} A \otimes M$ is of form $\frac{1}{S} \otimes m$

$$
\begin{aligned}
\forall \frac{1}{s} \otimes m \in \operatorname{ker} f & \Rightarrow \frac{m}{s}=0 \\
& \Rightarrow \exists t \in S \text { s.t. } t m=0 \\
& \Rightarrow \frac{1}{s} \otimes m=\frac{t}{s t} \otimes m=\frac{1}{s t} \otimes t m=0
\end{aligned}
$$

Cor $3.6 . S^{-1} A$ is a flat $A$-module.
$\operatorname{mpp} 3.7 S^{-1} M \otimes_{S^{-1} A} S^{-1} N \leadsto S^{-1}\left(M \otimes_{A} N\right)$
Pf: $S^{-1} M \otimes_{S^{1} A} S^{-1} N \cong\left(S^{-1} A \otimes_{A} M\right) \otimes_{S^{-1} A}\left(S^{-1} A \otimes_{A} N\right)$

$$
\begin{aligned}
& \cong M \otimes_{A}\left(S^{-1} A \otimes_{S_{A}^{-1}} S^{-1}\right) \otimes_{A} N \\
& \cong S^{-1} A \otimes\left(M \otimes_{A} N\right) \\
& \cong S^{-1}\left(M \otimes_{A} N\right)
\end{aligned}
$$

Cor : $M_{\mathcal{Z}} \otimes_{A_{g}} N_{\mathcal{Z}}=\left(M_{A} N\right)_{\mathcal{Z}}$
§3.2 local properties
Def: A property $P$ of a ring $A$ (or of an $A$-node)
is said to be a local property if
$A(a, M)$ has $P \Leftrightarrow A_{g}($ or $M z)$ has $P \forall g$

Pip 3.8. $M=A$-module. TFAE
i) $M=0$
ii) $M z=0 \quad \forall z$ prime ideals of $A$
iii) $M_{m}=0 \quad \forall m$ maximal ideals of $A$

Pf: i) $\Rightarrow$ ii) $\Rightarrow$ iii) shear
iii) $\Rightarrow i):$ Suppose $M \neq 0 . \forall x \in M \backslash\{0\}$.

$$
\begin{gathered}
\quad \pi:=A_{n n}(x) \neq A \\
\Rightarrow \exists m \text { sit. } \quad \lambda \leq m
\end{gathered}
$$

$$
\begin{aligned}
& M_{m}=0 \Rightarrow \frac{x}{1}=0 \Rightarrow \exists a \in A-m \text { sit. } \\
& \Rightarrow a x=0 \\
&\Rightarrow x \cap A-m \neq \phi \quad\}
\end{aligned}
$$

Prop 3.9. $\phi: M \rightarrow N \quad A$-mod. ham. TFAE
i) $\phi=\operatorname{in} j$
ii) $\phi_{z}=i n j \quad \forall g$
iii) $\phi_{m}=i n j \quad \forall m$

Similar for surjective.
Pf: $\operatorname{ker}\left(\phi_{8}\right)=(\operatorname{ker} \phi)_{8}$

$$
\begin{aligned}
& k \operatorname{men} \phi=0 \Leftrightarrow \operatorname{ker}_{2}=0 \forall g \Leftrightarrow k \ln \phi_{m}=0 \forall m \\
& \begin{array}{lcc}
\Uparrow & \Uparrow & \Uparrow \\
\phi=i n g & \phi=i n g & \forall z
\end{array} \quad \phi_{m}=\text { ing } \quad \forall m
\end{aligned}
$$

Prop 3.10 Flatness is a local propene．ie．TFAE
i）$M / A=$ flat
ii）$M_{8} / A_{g}=$ flat $\quad \forall z$
iii）$M_{m} / A_{m}=$ flat $\forall m$ ．
阬：i）$\Rightarrow i i) M_{马} \otimes_{A_{B}^{-}}=\left(M \otimes_{A} A_{马} \otimes_{A_{B}^{-}}\right)=M \otimes_{A}-$
ii）$\Rightarrow$ iii）clear

$$
\begin{aligned}
& \text { iii) } \Rightarrow i): \forall N G P \\
& \Rightarrow \quad N_{m} \hookrightarrow P_{m} \quad \forall m \\
& \Rightarrow M_{m} \dot{\theta}_{A_{m}} M_{m} \subseteq M_{m} \dot{A}_{A_{m}} P_{m} \forall m \\
& \Rightarrow\left(M \otimes_{A} N\right)_{m} \subseteq\left(M \otimes_{A} P\right)_{m} \forall m \\
& \Rightarrow M \otimes_{A} N \subset M \otimes_{A} P \\
& \Rightarrow M \theta-\text { exact } \Rightarrow M=\text { flat. }
\end{aligned}
$$

§3.3 extended and contracted ideals in rings of fractions

$$
f: A \rightarrow S^{-1} A \quad a \mapsto \frac{a}{1}
$$

$C:=\{$ contracted ideals in $A\}$
$\hat{V}_{1}:=1$
$E:=\left\{\right.$ extended iccoals in $\left.S^{-1} A\right\}$

Fact: $\quad u^{e}=S^{-1} \sqrt{4}$

$$
S=S_{i} t_{i}
$$

Pf: $\sum_{i} f\left(a_{i}\right) \cdot \frac{b_{i}}{s_{i}}=\sum_{i} \frac{a_{i} b_{i}}{s_{i}}=\frac{\sum_{i} a_{i} b_{i} t_{i}}{S}=:=\frac{a}{S}$

Pop 3.11

$$
\begin{aligned}
& \text { i) } \quad E \triangleleft S^{-1} A \Rightarrow E \in E \\
& \text { i.e. } \forall b \triangleleft S^{-1} A \exists \triangleleft \triangleleft A \text { s.t. } \quad b=s^{-1} \sqrt{4}
\end{aligned}
$$

ii) $\pi \triangleleft A \Rightarrow \pi^{e c}=\bigcup_{s \in S}(2: 5)$
in particular: $\dot{u}^{e}=(1) \Leftrightarrow \quad \pi \cap S \neq \phi$
iii) $₫ \triangleleft A$ 。
$\vec{u} \in C \Leftrightarrow \forall s \in S$ is not zeer-divisor in $A / a$
iv) $\{g \triangle A:$ Pnim $\mid g \cap S=\phi\} \stackrel{1: 1}{\longleftrightarrow}\left\{q \Delta S^{-1} A:\right.$ primen $\}$
v) $S^{-1}$ communtes with $\Sigma, \pi, \cap \& \Gamma$

阬: i) $b \triangleleft S^{-1} A$,

$$
\begin{aligned}
\forall & \frac{x}{s} \in E \\
& \Rightarrow \frac{x}{1}=\frac{s}{1} \cdot \frac{x}{s} \in E \\
& \Rightarrow x \in G^{c} \\
& \Rightarrow \frac{x}{s} \in E^{c e} \\
\Rightarrow S & \subseteq G^{c e} \Rightarrow E=E^{c e}=\left(S^{c}\right)^{e}
\end{aligned}
$$

ii)

$$
\begin{align*}
& x \in \pi^{e c}=\left(s^{-1} \pi\right)^{c} \\
& \Leftrightarrow \frac{x}{1} \in S^{-1} \pi \tag{17}
\end{align*}
$$

$\Leftrightarrow \frac{x}{1}=\frac{a}{s^{\prime}}$ for some $a \in\left\{\mathfrak{u}, s^{\prime} \in S\right.$
$\Leftrightarrow\left(x s^{\prime}-a\right) t=0$ for some $a \in \pi, s_{1}^{\prime}, t \in S$

$$
\xrightarrow[\rightarrow]{s=s^{\prime} t}
$$

$\underset{\alpha=x s, t=1}{\Leftrightarrow} x \cdot s \in \lambda \quad$ for some $s \in S$
$\Leftrightarrow x \in(\pi: s)$ for some $s \in S$
iii)

$$
\begin{aligned}
u \in C & \Leftrightarrow \pi^{e c} \subseteq \pi \\
& \Leftrightarrow\left(\frac{x}{1} \in \pi^{e} \Rightarrow x \in \pi\right) \\
& \Leftrightarrow(s x \in \pi \bar{r} \stackrel{s \in S}{\Rightarrow} x \in \pi) \\
& \Leftrightarrow(\bar{s} \bar{x}=0 \text { in A/ } / \sqrt{s} \stackrel{s \in S}{\Rightarrow} \bar{x}=0 \text { in A/a})
\end{aligned}
$$

$\Leftrightarrow \quad \bar{s}$ is not 2000 divisor in $A / 2 \pi \quad \forall s t S$
iv) $C \stackrel{1: 1}{\longleftrightarrow} E$
$U$ (iii)

$$
\{g \triangleleft A \text { pine } \mid g \cap s=\phi\} \underset{? \mapsto s^{-1} f}{\stackrel{f^{-1}(q) \& q}{\leftrightarrows}}\left\{q \Delta s^{-1} A \text { prime }\right\}
$$

$$
\begin{aligned}
& A / f^{-1}(q) \leftrightarrow S^{-1} A / q \Rightarrow f^{-1}\left(\frac{q}{q}\right)=\text { prime in } A \\
& S^{-1} A / S^{-1} g=\bar{S}^{-1}(A / P) \subseteq \operatorname{Frac}(A / p) \\
& \Rightarrow S^{-1} g=\text { prine in } S^{-1} A
\end{aligned}
$$

$v) \sum \& \pi \quad \vee(1.18) \quad \cap \vee(3.4)$

$$
\begin{aligned}
& S^{-1}(\sqrt{\pi}) \subset S^{-1}\binom{\cap f}{f \supseteq \pi}=\bigcap S^{-1} g \\
& B \circ x \\
&=\cap q=\sqrt{S^{-1} x}
\end{aligned}
$$

$$
\forall \frac{r}{s} \in \sqrt{S^{-1} \sqrt{r}} \Rightarrow \frac{r^{n}}{S^{n}}=\frac{a}{t}
$$

$$
\Rightarrow u\left(t r^{n}-a s^{n}\right)=0
$$

$$
\Rightarrow(u t r)^{n} \in \pi
$$

$$
\Rightarrow \quad u t r \in \sqrt{\pi}
$$

$$
\Rightarrow \frac{r}{S}=\frac{u t r}{\text { sut }} \in S^{-1} \sqrt{a}
$$

$\sqrt{0}=\bigcap_{g: \text { pin }}$. (another proof)
Pf: " $\subseteq$ " clear

$$
\begin{aligned}
& " 2 \text { ": } \forall s \in \bigcap_{\mathcal{F}} \mathcal{P} \text { if } s \notin \sqrt{0} \\
& \quad \Rightarrow \quad 0 \notin\left\{1, s, s^{2}, \cdots\right\}=S \\
& \Rightarrow S^{-1} A \neq 0 \\
& \Rightarrow \exists q \triangleleft s^{-1} A: \text { prim } \\
& \Rightarrow \exists 马 \triangleleft A \text { prime } P \cap S \neq \phi \\
& \Rightarrow s \notin P \quad 4
\end{aligned}
$$

Cor $3.12 \quad S^{-1} \operatorname{Nil}(A)=\operatorname{Nil}\left(S^{-1} A\right)$

Cor 3.13. $\left\{f^{\prime} \Delta A\right.$ prime $\left.\mid f^{\prime} \subset q\right\} \stackrel{I: 1}{\longleftrightarrow}\left\{q \triangleleft A_{g}\right.$ prime $\}$ Pf: $S:=A \mid Z$
$A \leadsto A_{z}\left\{P^{\prime} \mid P^{\prime} \subset p\right\}$
$A \rightarrow A / s \quad\left\{P^{\prime} \mid P \subset P^{\prime}\right\}$

Fact: $\quad \operatorname{Frac}(A / \mathcal{Z}) \cong A_{g} / P A_{g}$
$\uparrow$ residue field at $I$

Pup $3.14 M=$ f. $8 . A$-module. Then

$$
S^{-1}\left(A_{n n}(M)\right)=A_{n n}\left(S^{-1} M\right)
$$

Pf: induction on the number of generations.

$$
\left.\begin{array}{rl}
I^{0} M \cong A / a & \Rightarrow\left\{\begin{array}{l}
A_{n n}(M)=\pi \\
S^{-1} M=S^{-1} A / S^{-1} \pi
\end{array} \Rightarrow A_{n n}\left(S^{-1} M\right)=S^{-1} \pi\right.
\end{array}\right\}
$$

$$
\begin{aligned}
& =A_{n n}\left(S^{-1} M\right) \cap A_{m}\left(S^{-1} N\right) \\
& =A_{n n}\left(S^{-1} M \cap S^{-1} N\right) \\
& =A_{n n}\left(S^{-1}(M+N)\right)
\end{aligned}
$$

Cor $3.15 \quad N, P \subseteq M$ submodules. $P=f . \delta$. Then

$$
S^{-1}(N: P)=S^{-1} N: S^{-1} P
$$

$P f: \quad S^{-1}(N: P) \stackrel{2.2}{=} S^{-1}(\operatorname{Ann}((N+P) / N))$

$$
\begin{aligned}
& \frac{3.14}{=} \operatorname{Ann}\left(S^{-1}((N+P) / N)\right) \\
& =\operatorname{Ann}\left(\left(S^{-1} N+S^{-1} P\right) / S^{-1} N\right) \\
& \stackrel{2.2}{=}\left(S^{-1} N: S^{-1} P\right)
\end{aligned}
$$

Pup $3.16 A \xrightarrow{f} B$ ring ham. $Z \triangleleft A$ pine. Then $\mathcal{F}=$ contrition of some prime ideal $q \Delta B \Leftrightarrow p^{e c}=p$.

Rf: $\Rightarrow p=q^{c} \Rightarrow p=q^{c}=q^{c e c}=p^{e c}(1.17)$

$$
\Leftrightarrow \quad z=\left(g^{e}\right)^{c} \quad q:=g^{e} \quad \times \text { (nat prime) }
$$

$$
S:=f(A-P) \subseteq B
$$

$$
\left.z^{e} \cap S=\phi \quad\left(f(a) \in z^{e} \Rightarrow a \in \mathcal{F}^{e c}=z\right\}\right)
$$

$$
g^{e} \subset m \subset S^{-1} B
$$

$$
A \rightarrow B \rightarrow s^{-1} B
$$

$$
f \longmapsto f^{e} \longmapsto s^{-1} f^{e}
$$


$8!$

$$
q \supseteq p^{e} \& q \cap S=\phi
$$

$$
\Rightarrow \quad q^{c}=p
$$

